Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Alana Jacobson with Sara Obama, President Obama's grandmother
Our team and audience
Postdoc Will Sharpee looking for whiteflies on the backs of cassava leaves
George Kennedy collecting whiteflies
Postdoc Gaby Chavez on local transport
Whiteflies
All of our samples

Why prioritize the Cassava Mosaic Virus?

Cassava is a major food crop in Africa and Asia. Cassava can grow under drought, high temperature and poor soil conditions, but its production is severely limited by viral diseases. Cassava Mosaic Disease (CMD) is one of the most economically important crop diseases in Africa.

TWITTER BLOCK

RT : 📣 My group has a 4-year PhD position to develop next-generation artificial small RNA-based RNAi for crop imp… https://t.co/DG4ydwbfuS
RT : Just how quickly does spontaneous mutation of cabbage leaf curl virus occur? Find out in an Editor’s Pick by… https://t.co/gp9ML5rEvA
RT : Check out our collaborative work with ! https://t.co/9Vd5flS2uf
RT : The TARI DRI, Dr Joseph Ndunguru and Mr Ratego Frank from TARI Uyole today visited Kibidula Company at Mafinga in… https://t.co/agvpHU1FuC